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Abstract. Using real-space renormalisation-group methods we study the two-dimensional 
bonded lattice fluid model on a triangular lattice introduced by Bell and Lavis to describe 
the anomalous properties of water. We obtain the phase diagram for different values of the 
bonding strength. There are three different phases which correspond to the solid, liquid and 
gas phases of the model. The fixed points which control the transitions between these 
different phases are determined and the melting transition is found to be second-order in 
contrast to the predictions of mean-field theory. The molecular density and isothermal 
compressibility are calculated along an isobar which traverses all three phases and also along 
the coexistence curve and the results are compared with previous mean field calculations of 
these quantities. 

1. Introduction 

Since the work of Bernal and Fowler (1933) it has been widely recognised that many of 
the 'anomalous' properties of water arise from the competition between open and 
close-packed forms of molecular order which originates in the ability of the water 
molecule to form tetrahedrally directed hydrogen bonds. Bell and Lavis (1970) have 
considered a simple bonded-fluid model on a triangular lattice in which hydrogen 
bonding was represented by attributing to each molecule preferential bonding direc- 
tions. Each molecule has three bonding arms at angles of 120" to each other and two 
distinct orientations in which the arms are directed towards nearest-neighbour sites. 
Since the molecules can be present or absent, each site can be in one of three possible 
states which may be represented by the spin states S = kl ,  0 of a spin-1 Ising model. 
Mean field calculations (Lavis 1973, 1975) and an exact transfer matrix treatment 
(Lavis 1976) of this model were able to reproduce some of the main features of the 
anomalous behaviour of water. The transition from the closed-packed liquid phase to 
the open (honeycomb) solid phase was found to be first-order with the characteristic 
decrease in density of the water-ice system. 

In this paper we investigate the model using a block-spin real-space renormalisation 
group (RSRG) method (for a review see Niemeijer and van Leeuwen 1976). In order to 
preserve the sublattice ordering which occurs in the solid phase, we use the nine-site 
cluster employed by Schick et a1 (1977) in their study of the spin-) king model and by 
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Schick and Griffiths (1977) for the 3-state Potts model on the triangular lattice. The 
number of necessary coupling constants is determined by the size of the basic cluster 
and the symmetry of the model. In our case, we must consider a 6-dimensional space of 
couplings. The model is a slight generalisation of the Blume-Emery-Griffiths (1971) 
model which has been extensively studied using RSRG methods (Berker and Wortis 
1976, Adler et a1 1978, Mahan and Girvin 1978). With a suitable choice of relation- 
ships between the coupling constants, the Blume-Emery-Griffiths model reduces to a 
3-state Potts model with a 2-dimensional coupling-constant subspace. The analogous 
special case of the Bell-Lavis model has a 3-dimensional subspace and this case has 
been studied by Young and Lavis (1979) using the same methods as in the present 
paper. They found all the fixed points in the extended Potts subspace and suggested 
that melting in the Bell-Lavis model is a second-order transition belonging to the same 
universality class as the ferromagnetic 3-state Potts model. However, our present 
calculations indicate that the melting transition does not belong to this universality 
class, although it is indeed second-order. The fact that the transition is continuous is 
unfortunate for the correspondence of the model with water, but this failure is probably 
associated more with the 2-dimensionality of the lattice than with its bonding structure, 

We describe the model and the renormalisation group transformation in 0 2. In 0 3, 
the results for the phase diagram of the Bell-Lavis model are presented together with 
the fixed points and critical exponents describing the transitions between the gas, liquid 
and solid phases. The calculation of the thermodynamic functions is outlined in § 4 and 
a comparison is made of our present results with the previous mean-field and transfer- 
matrix calculations. Our conclusions are summarised in § 5 .  

2. The model 

As indicated in the introduction, the three possible states of a site on the triangular 
lattice are represented by the states S = *l ,  0 of a spin-1 king model. The molecular 
states are identified with S = *l, as shown in figure 1, and S = 0 represents a vacant 
state. A bonded pair of molecules has interaction energy - ( E  + w )  and an unbounded 
nearest- neighbour pair has interaction energy --E. In order to take proper account of 
sublattice orderings the lattice is divided into three equivalent sublattices A, B, C as 
indicated in figure 1. Within the grand canonical distribution with chemical potential p, 
the Hamiltonian of the system is given by (Young and Lavis 1979) 

where the summation is over all elementary triangles A of the lattice and &(cy = 
A, B, e) denotes the spin of the site on sublattice cy in triangle A. 

Apart from the final term in (1) this Hamiltonian has the same form as the 
Blume-Emery-Griffiths model. The special feature of the present model is exhibited 
by the final term which removes the degeneracy associated with cyclic and anti-cyclic 
ordering of the states S = +1,0, -1 around an elementary triangle. For w > 0, cyclic 
ordering is favoured and this is the case that will be studied in this paper. 

In any RSRG calculation all terms which will be generated by the recurrence relations 
must be included even if they are not present in the initial Hamiltonian. In our case, 
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Figure 1. A portion of the triangular lattice showing the convention adopted for labelling 
the three sublattices A, B and C. A bonded pair of molecules is also shown with their 
corresponding spin states indicated. 

these are simply all the terms which are invariant under simultaneous inversion 
( S  + - S )  of all spins plus the final term in (1). Although this term is not invariant with 
respect to simultaneous inversion of all spins, it does not generate any new terms. In the 
general case, we have the Hamiltonian (Young and Lavis 1979) 

with 
H A - - - 1- ~A(s;  + S ;  + s:) + $J(sAsB + SBSC + sCSA) 

- 2  2 2  +iE(sisk + s”,: + sgs;) +LSASBSC 

+Ms~sBs~(sA+ SB + s~)-~.IZ(SA-SB)(SB-SC)(SC-SA).  (2b )  

Comparing equations (1) and (2) we observe that the RSRG method generates two 
additional terms involving all three spins of the elementary traingles with coupling 
constants L and M. The spectrum of Ha for each elementary triangle of the lattice has 
seven different configurations Cj with corresponding energies ej ( j  = 1,2,  . . . ,7). These 
states are indicated in table 1 where the energies ej are given both in terms of the 
coupling constants of equation ( 2 6 )  and also the original parameters of the model 
defined by (1). 

We use the block spin transformation employed by Schick et a1 (1977) in their study 
of the spin-; king model. An initial cluster of nine sites is chosen such that three sites 
belong to each of the three sublattices and periodic boundary conditions are applied. 
Application of the renormalisation group transformation reduces the nine-site cluster 
to a cluster of three sites, each one belonging to one of the three sublattices, and 

Table 1. Spectrum of HA. 

Energy 
0 

Configuration Ci Degeneracy wi ei E i  

1 
2 
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corresponds to an increase in length scale by a factor of A. To preserve the 3-state 
Potts symmetry of the model we adopt the weight function used by Schick and Griffiths 
(1977) and Young and Lavis (1979). 

In addition to the Potts subspace, the Hamiltonian in (2) reduces to a spin-3 Ising 
model in two distinct limits. In the case p + CO (A + -CO) the state S = 0 is suppressed 
and we have a nearest neighbour spin-? Ising model with coupling constant -7- 21t? = 
-pw/4. Our choice of weight function becomes equivalent to the ‘majority rule’ weight 
function of Schick et a1 (1977) in this limit and we obtain their results for the behaviour 
in the absence of a magnetic field and three spin couplings. That is, there is a 
ferromagnetic transition for w < 0 but no transition in the case w > 0 in agreement with 
the known exact results for the triangular lattice. Since we are concerned with this latter 
situation which favours bonding, the antiferromagnetic Ising model on the triangular 
lattice will correspond to the liquid phase of the model characterised by a large degree 
of short-range order, but no long-rnnge order. This feature was also correctly obtained 
in the mean field approach of Lavis (1973). The second special case corresponds to the 
limit 7 = = fi = 0 where the distinction between S = *l is suppressed. If we define a 
new variable t = 2s’- 1 at each site (Griffiths 1967), then we may rewrite (2) as a spin-4 
Ising model with both a magnetic field and three spin couplings present. In this limit our 
weight function for the S variables does not reduce to a ‘majority rule’ for the t variables 
since the symmetry between t = *l is not preserved. 

Defining the variables 

xi = exp(q) ( j  = 1,2,  * . . , 7 )  (3) 

the recurrence relations can be written in the form 

where ni is the number of triangles in the nine-site cluster in state Ci of table 1, Pj({ni}) is 
the degeneracy associated with {ni}  and G(xl, x2,  . . . , x 7 )  is given by the condition 
x1 = x i  = 1. The parameter G is a constant term in the Hamiltonian generated at each 
iteration of (4) and will be used in 0 4 to calculate the thermodynamic functions. We 
start with values of the xi variables in (3) related to the coupling constants of the model 
in (1) as in table 1. The recurrence relations (4) then determine trajectories in the full 
6-dimensional space of couplings. A trajectory which starts at a point where the 
behaviour of the system is not critical will iterate to a sink which characterises that 
phase. These regions are separated by the critical regions which form domains of 
attraction for the critical fixed points. Once these fixed points have been located the 
recurrence relations can be linearised about the fixed points and the eigenvalues A i  of 
the linear equations can be calculated. The critical exponents yi are related to the 
eigenvalues by A i  = by’ where b is the scale factor and is equal to h in the present 
calculation. 

3. Phase diagram and critical behaviour 

The behaviour at zero temperature of the model defined in equation (1) can be obtained 
most easily by comparing the ground-state energies of the seven possible configurations 
of each elementary triangle. These energies are given in terms of the parameters p, w 
and E in the final column of table 1. In our analysis we shall only consider the cases for 
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-5 

K k  
-10 

which both E L 0 and w L 0 since this corresponds to the situation in water where 
hydrogen bonding is believed to play an important role. 

In the absence of bonding, i.e. w = 0, the stable configuration at zero temperature is 
the vacant state C1 if p < - 3 ~  whereas the close-packed states C2 and C5 are most 
stable if p > - 3 ~ .  As the strength of the bonding parameter w increases from zero, the 
ground state characteristics of the system remain qualitatively unchanged until w = 36. 
The only difference for 0 < w < 3~ is that the degeneracy between the states C2 and C5 is 
lifted and C5 is the most stable configuration if p > - 3 ~  + w. However, for values of w 
larger than 36, there is a range of the parameter p in which the open (honeycomb) 
bonded phase is the stable ground state and this is represented by the state c6 of table 1. 
The condition for c6 to be the most stable phase is determined by - $ ( E  + w )  < p C -66. 
The vacant state C1 is most stable for p < - ; ( E  + w )  and the close-packed state C5 is 
most stable for p > - 6 ~ .  Since the molecular number densities of the states C1, C6 and 
CS are 0, $ and 1 respectively, they correspond to the gas, solid and liquid phases of the 
Bell-Lavis model. The liquid ground state Cs is highly degenerate having the same 
ground state entropy as the spin-$ king antiferromagnet on a triangular lattice (Bell and 
Lavis 1970). 

The domains of these three phases at finite temperature correspond to the domains 
of attraction of the corresponding sinks of the recurrence relations in equation (4). In 
terms of the variables xi defined in equation (3), the sinks for the solid and gas phases are 
Xj/x6 -* ai6 and x i / x I  + ail respectively. The sink for the liquid phase at zero tempera- 
ture is a special fixed point, x i / x 5  = ais, and is accessible only for trajectories which begin 
at zero temperature. It is the same fixed point as AF’ that was found in the work of 
Schick et a1 (1977). However, at any finite temperature in the liquid phase all 
trajectories iterate to a sink given by x j / x 5 + ( S i 2 + S i 5 ) .  A numerical study of the 
trajectory flows allows us to construct the phase diagram and to determine the 
boundaries which separate one phase from another. 

Our results for the phase diagram in the case w = 0, where the bonded solid phase is 
not energetically favoured, are shown in figure 2(a )  as a function of the reduced 
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Figure 2. Phase diagram for the Bell-Lavis model in terms of the variables * / E  and P E  for 
different values of the ratio W / E :  ( U )  W / E  = 0, ( b )  W / E  = 4  and ( c )  W/E = 10. First-order 
boundaries are indicated by dashed lines and second order boundaries by full lines. The 
critical end-point for the liquid-gas transition is designated by CO in (a) and ( b )  while the 
point where all three phases meet is designated by TI and T2 in (b)  and (c) respectively. 

variables F I E  and BE. We find a first-order phase boundary (broken curve) separating 
the gas and liquid phases. This boundary asymptotically approaches P I E  = -3 as 
P E  +CO and terminates at a critical end point CO at a finite temperature. The first-order 
transition is controlled by a discontinuity fixed point LG which has a characteristic 
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relevant exponent y1 = d = 2 (Nienhuis and Nauenberg 1975). The critical endpoint CO 
lies in the domain of attraction of a second fixed point X which has two relevant 
exponents. The coordinates and exponents of these fixed points are given in table 2. 

Figure 2 ( b )  shows the phase diagram for the case w = 4 ~ .  The solid phase now 
appears between the liquid and gas phases at low temperatures. We have chosen this 
value of w in order to compare our results with the mean-field calculations of Lavis 
(1973).  However, we shall postpone a detailed comparison until Q 4. The liquid-solid 
transition in figure 2(b)  is second-order and controlled by the fixed point LS of table 2 
which has only one relevant exponent. The gas-solid transition is first-order and 
controlled by the discontinuity fixed point GS while the liquid-gas transition at 
temperatures below the critical end-point CO is again controlled by LG with the 
transition at CO described by fixed point X. These three phase boundaries meet in figure 
2 ( b )  at the point TI which lies within the domain of attraction of fixed point Y of table 2. 
This latter fixed point has two relevant exponents and describes the meeting of one 
critical and two first-order surfaces. The exponents exhibit typical critical end-line 
behaviour (Berker and Wortis 1976), combining a leading y1 = d = 2 .with a y2 = 1-129 
in close agreement with the leading exponent of LS. 

Figure 2 ( c )  shows our results in the case w = 1 0 ~ .  At this larger value of the bonding 
strength the phase diagram is qualitatively different from that shown in figure 2(b) .  The 
first-order transition between the liquid and gas phases has disappeared but the 
gas-solid and liquid-solid transitions are still described by the fixed points GS and LS 
respectively. These two phase boundaries meet at point T2 in figure 2(c) and this point 
lies in the domain of attraction of fixed point AF+. This latter fixed point is situated in 
the extended Potts subspace studied previously in the paper by Young and Lavis (1979) 
and it has two relevant exponents. The changeover from the type of behaviour shown in 
figure 2 ( b )  to that found in figure 2 ( c )  occurs at an intermediate value of w when the 
domains of attraction of fixed points X, Y and AF' intersect at a point T3. This point lies 
in the domain of attraction of the fixed point Z of table 2 which possesses three relevant 
exponents and describes the intersection of two first-order and two second-order 
surfaces. 

Melting in the Bell-Lavis model is thus found to be a second-order phase transition 
in contrast to the mean-field calculations which predicted a first-order transition. 
However, this difference may be a consequence of the low dimensionality of the lattice. 
Mean-field theory also predicts a first-order transition for the ferromagnetic 3-state 
Potts model in two dimensions, whereas exact results obtained by Baxter (1973) show 
that it has a continuous transition. Our results are not in accord with the suggestion by 
Young and Lavis (1979) that the melting transition in the Bell-Lavis model belongs to 
the same universality class as the ferromagnetic 3-state Potts model. However, for 
large enough values of the bonding strength w, the point on the phase boundary where 
the second-order liquid-solid curve meets the first order gas-solid curve does indeed 
belong to this universality class. 

4. Thermodynamic functions 

The partition function Z associated with the initial cluster of nine sites is given by 
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where the wi are degeneracy factors associated with the configurations of each elemen- 
tary traingle and are listed in table 1. The remaining quantities are the same as those 
appearing in equation (4). After the renormalisation group transformation (4) has been 
applied, the partition function Z’ associated with the remaining cluster of three sites is 
simply 

Using (4) we find that the free energies per site are related as follows, 

where f = -$  In 2, f’ = - 5  In 2’ and G is a constant term generated at each iteration of 
the recurrence relations in (4). Iterating (7), we find that the free energy per site (in 
units of k g T )  can be written in the form 

In practice, the infinite series converges very quickly and the free energy at any initial 
values of the x, defined in (3) can be obtained after only a few iterations. Similarly, the 
derivatives of the free energy f(’) can be obtained using a chain-rule of differentiation 
(see Niemeijer and van Leeuwen 1976 for details). 

In the case of the model under study, the pressure P of the system is obtained from 
f(’) in (8) as follows 

PVo = - k B  Tf‘O’ (9) 

where Vo is the two-dimensional volume per lattice site. The pressure at any point in 
the phase diagrams of figure 2 can be calculated and, in particular, the value of the 
pressure on the boundaries which separate the phases. In this section we shall consider 
only the case w = 4 ~ .  Figure 3 shows our results for the phase diagram of figure 2 ( b )  
plotted as a function of PVO/E and kBT/E. The mean field results (Lavis 1973) as well as 
the exact matrix calculations (Lavis 1976) are also plotted for comparison. Although no 
phase transitions occur in the matrix calculations, the maxima in the compressibility can 
be regarded as incipient phase transitions. The principal difference between our results 
and the mean field calculations is that we find a second-order transition between the 
solid and liquid phases. 

The molecular number density p is given by 

and the isothermal compressibility KT is obtained from 

Figure 4 shows the density and compressibility along the isobar PVO/e = 0.1. This is an 
isobar which passes through all three phases of the system as the temperature is varied. 
At the highest temperatures the system is in the gas phase and a first-order transition 
from gas to liquid occurs on lowering the temperature with corresponding dis- 
continuities in p and KT. At lower temperatures there is a second transition from the 
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Figure 3. Pressure-temperature phase diagram of the Bell-Lavis model corresponding to 
the case w / c  = 4 of figure 2(b) .  Our results are indicated by the full and broken curves. The 
results of the mean fie!d treatment are indicated by the dotted lines and the exact matrix 
calculation results by the chain lines. The scale of the vertical axis changes by a factor of 5 at 
PV,/€ = 0.2. 

liquid to the solid phase with no discontinuity in density. The compressibility KT 
diverges weakly with an exponent y which is related to the relevant exponent of the 
fixed point LS of table 2 as follows: y = 2(yl - l ) / y l  and has the value 0.2289. Notice 
that there is a density maximum on the isobar but that it occurs in the solid rather than in 
the liquid phase as would be the casc for the water system (Eisenberg and Kauzmann 
1969 p 183). This particular weakness of the model was also present in the mean-field 
calculations of Lavis (1973) where the density maximum occurred in the metastable 
liquid phase at a temperature below the freezing temperature. We have, however, 
bbtained a compressibility minimum in the liquid phase although this is probably a 
direct result of the singular behaviour at the solid-liquid transition. In water this 
minimum occurs with JI discontinuity in KT at the water-ice transition (Eisenberg and 
Kauzmann 1969 p 184). 

Figure 5 shows our rpsults for the isothermal compressibility along the liquid-solid 
side of the first order boundary TICo of figure 2(b), The exponent y which describes the 
divergence of KT as the critical end point CO is approached along the coexistence curve 
is given in terms of the relevant exponents of fixed point X and has the value 
y = 2(y1 - 1) /y2  = 2.1847. However, as T1 is approached along the coexistence curve, 
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Figure 4. The quantities p and pzKT/@Vo along the isobar PVO/e = 0.1 are shown as a 
function of kBT/e. The vertical scale changes by a factor of 200 at the value 1.0 and the 
horizontal scale changes by a factor of 10 at kBT/e = 1.75. 

0 
k, Tlc 

Figure 5. The quantity pzKT/pVo along the solid and liquid sides respectively of the 
solid-gas and liquidrgas coexistence curve is shown as a function of kBT/e. The vertical 
scale changes by a factor of lo3 at the value 100. 

the value of y is determined by the exponents of fixed point Y and has the value 
y = 2(y2- l ) / y z  = 0.2288. This latter value of y is, as might be expected, very close to 
that for the liquid-solid transition along an isobar. Of course, the isothermal compres- 
sibility must have a minimum along the coexistence curve between the two singularities. 
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This is also the case for the water system (Rowlinson 1969 p 5 5 )  but it is difficult to 
regard this as a success for the Bell-Lavis model in view of the second-order nature of 
the liquid-solid transition. 

5. Conclusions 

We have studied the Bell-Lavis model of a bonded lattice fluid on a triangular lattice 
using RSRG techniques. In contrast to the mean-field calculations for this model, we find 
that the transition between the solid and liquid phase is second-order. However, this 
difference is most likely due to the low dimensionality of the lattice. Although the 
two-dimensional bonding model does not correctly describe the melting transition that 
is observed in water, a three-dimensional. bonding model such as that proposed by Bell 
(1972) for a BCC lattice may in fact provide a more realistic description. We are 
presently investigating this latter model using RSRG techniques. 
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